If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5v^2+80v=0
a = 5; b = 80; c = 0;
Δ = b2-4ac
Δ = 802-4·5·0
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-80}{2*5}=\frac{-160}{10} =-16 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+80}{2*5}=\frac{0}{10} =0 $
| z/2-6=68 | | 50=2x+15 | | 16-2n=-8+4n(n-3) | | 56-v=24 | | 12x+16=10x+40 | | 3y+10=64+y | | 114=60-6x | | 4+2(x-6)=5x-11 | | -41=-18-(3-4x | | 5(k-2)=115 | | 13x+11=7x+9 | | 3/4x+12=48 | | x-2.4=9.5 | | -4p-8=20 | | -w/6=-54 | | 11x-9+6x+26=180 | | 2(u-2)-5u=-22 | | 6r+12/5=24 | | 3x-6=5x+17 | | (14x-94)=102 | | 49=2x-6x=52 | | -44=-u/8 | | y=180-3/2 | | 27-k=11 | | K^2=3-2k | | X+3y=-23X+4y=-26 | | 1342x=16104 | | 5-10x=2x-19 | | 17x-9=5x+51 | | -6/h=3 | | 10z-22=3(3z+11)-z | | (14x-94)+78=102 |